PII: S0040-4039(97)00913-1

## Reaction of N-[Bis(methylthio)methylene]glycinates with Electron Deficient Alkynes. Synthesis of (Z)- $\alpha$ , $\beta$ -Didehydroglutamic Acid Derivatives

Carlos Alvarez-Ibarra\*, Aurelio G. Csáky, Elena Martín Ortega, M. Jesús de la Morena and M. Luz Quiroga

Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense. 28040 - Madrid

Abstract: The addition of either the alkaline enolates of the glycinates 1 or their naked enolates to electron defficient alkynes allows for the synthesis of substituted  $(Z)-\alpha,\beta$ -didehydroglutamic acid derivatives 7 via a Michael addition /1,3-prototropic rearrangement sequence. © 1997 Elsevier Science Ltd.

 $\alpha,\beta$ -Didehydroamino acids constitute a relevant subclass within non proteinogenic amino acids, which include peptidic antibiotics, natural products and key intermediates in the synthesis of non natural  $\alpha$ -amino acids.<sup>1</sup> The protection of the nitrogen atom in these compounds as N-diphenylmethylene or N-[bis(methylthio)methylene] derivatives has proven of use from a synthetic standpoint.<sup>2</sup> On the other hand, conformationally restricted glutamic acid derivatives are currently being used in the treatment of Altzheimer's desease, epilepsy and stroke.<sup>3</sup> We report herein the reaction of the alkaline enolates 2 (M = Li, K) and of the naked anions 3 (M = :) derived from the glycinates<sup>4</sup> 1 with the  $\pi$ -defficient alkynes 4, with obtention of the  $\alpha,\beta$ -didehydroglutamic acid derivatives 7 *via* a Michael addition/1,3-prototropic rearrangement sequence (Scheme 1, Table 1).

Deprotonation of ester 1a with KO'Bu, LDA, or BuLi followed by reaction with ethyl propiolate (4a) (entries 1 - 3) gave compound 7a, which was obtained as a single isomer with a Z geometry in the C=C bond.<sup>5</sup> The same stereochemical result was obtained in the reactions of ester 1b with 4a (entry 4) and in the reactions of either 1a or 1b with the ethynylketones 4b-e (entries 5 - 8). However, no reaction took place between the alkaline enolates 2 (M = Li, K) and the  $\beta$ -substituted alkynes 4f,g. This could be overcome by the reaction of alkynes 4f,g with the naked anions 3 (M = :), which were generated either by deprotonation of 1 with the phosphazene P4-Bu base<sup>6</sup> (entries 10, 12) or by treatment of the potassium enolates 2 (M = K) with 18-crown-6

| Table 1. Addition Reaction of Glycinates 1 with Alkynes 4 <sup>a</sup> |            |                 |    |                 |                                     |                     |                    |
|------------------------------------------------------------------------|------------|-----------------|----|-----------------|-------------------------------------|---------------------|--------------------|
| No.                                                                    | 1          | $\mathbb{R}^1$  | 4  | $\mathbf{R}^2$  | $\mathbb{R}^3$                      | Base                | 7 (%) <sup>b</sup> |
| 1                                                                      | 1a         | <sup>t</sup> Bu | 4a | Н               | OEt                                 | KO <sup>t</sup> Bu  | 7a (85)            |
| 2                                                                      | 1a         | ¹Bu             | 4a | Н               | OEt                                 | LDA                 | 7a (80)            |
| 3                                                                      | 1a         | ¹Bu             | 4a | Н               | OEt                                 | BuLi                | 7a (80)            |
| 4                                                                      | 1 b        | Et              | 4a | H               | OEt                                 | KO <sup>t</sup> Bu  | 7 <b>b</b> (85)    |
| 5                                                                      | la         | ¹Bu             | 4b | Н               | $C_6H_5$                            | KO <sup>†</sup> Bu  | 7c (80)            |
| 6                                                                      | 1 <b>b</b> | Et              | 4c | Н               | p-MeO-C <sub>6</sub> H <sub>5</sub> | KO <sup>t</sup> Bu  | 7 <b>d</b> (85)    |
| 7                                                                      | 1b         | Et              | 4d | Н               | p-Br-C <sub>6</sub> H <sub>5</sub>  | KO <sup>t</sup> Bu  | 7e (75)            |
| 8                                                                      | 1a         | ¹Bu             | 4e | H               | СН,                                 | KO <sup>t</sup> Bu  | <b>7f</b> (50)     |
| 9                                                                      | 1a         | ¹Bu             | 4f | CH <sub>3</sub> | OEt                                 | KO'Bu/18-crown-6    | 7 <b>g</b> (80)    |
| 10                                                                     | 1a         | 'Bu             | 4f | CH <sub>3</sub> | OEt                                 | P4- <sup>t</sup> Bu | 7 <b>g</b> (60)    |
| 11                                                                     | 1b         | Et              | 4g | Ph              | OEt                                 | KO'Bu/18-crown-6    | 7h (75)            |
| 12                                                                     | 1 <b>b</b> | Et              | 4g | Ph              | OEt                                 | P4- <sup>t</sup> Bu | 7h (55)            |

(entries 9, 11). Compounds 7g,h were also obtained as single Z isomers.<sup>5</sup>

(a) THF, -78°C, 15 min. (b) Pure isolated yields.

It is worth mentioning that no products arising from protonation of intermediate 5 or  $\alpha$ -protonation of 6 were detected.

In conclusion, the addition of either the alkaline enolates of the glycinates 1 or their naked enolates to electron defficient alkynes should be considered a new reaction which allows for the synthesis of a wide variety of substituted  $\alpha,\beta$ -didehydroglutamic acid derivatives, with anticipated utility as pharmacologically active compounds. This widens the scope of previously published procedures for the synthesis of  $\alpha,\beta$ -didehydroamino acid derivatives.

Acknowledgements: The Dirección General de Investigación Científica y Técnica (Project PB93-0025) is gratefully acknowledged for finantial support. RMN and MS Services of UCM are also acknowledged.

## References and Notes:

- 1. See for example: (a) Noda, K.; Shimohigashi, Y.; Izumya, N. in *The Peptides*, Academic Press: New York, 1983, Vol. 5, p. 285. (b) Schmidt, U.; Liberknecht, A.; Wild, J. *Synthesis* 1988, 159 172.
- (a) Buñuel, E.; Cativiela, C.; Díaz de Villegas, M. D.; Jiménez, A. I. Synlett 1992, 579 581. (b) Cativiela, C.; Díaz de Villegas, M. D. Tetrahedron 1993, 49, 497 506. (b) Rubio, A.; Ezquerra, J. Tetrahedron Lett. 1995, 36, 5823 5826. (c) Jonczyk, A.; Pakulski, Z. Tetrahedron Lett. 1996, 37, 8909 89012. (d) López, A.; Moreno-Mañas, M.; Pleixats, R.; Roglans, A.; Ezquerra, J.; Pedregal, C. Tetrahedron 1996, 52, 8365 8386.
- (a) Bridges, R. J.; Geddes, J. W.; Monaghan, D. T.; Cotman, C. W. in Excitatory Amino Acis in Health and Disease; Lodge, D., Ed., Wiley: New York, 1988, p. 321.
  (b) Nagamitsu, T.; Sunazuka, T.; Tanaka, H.; Omura, S.; Sprengeler, P. A.; Smith III, A. B. J. Am. Chem. Soc. 1996, 118, 3584 3590.
- 4. (a) Hoppe, D. Angew Chem. Int. Ed. 1975, 14, 424 426. (b) Hoppe, D.; Beckmann, L. Lieb. Ann. Chem. 1979, 2066 2075.
- 5. Determined by comparison of the <sup>1</sup>H-RMN data with those of related compounds. See ref. 2b.
- (a) Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 1167 1169.
  (b) Pietzonka, T.; Seebach, D. Chem. Ber. 1991, 124, 1837 1843.